Network Monitoring, Management and Automation

Introduction to

Dec 8 - 12, 2019

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

Whate is SNMP?

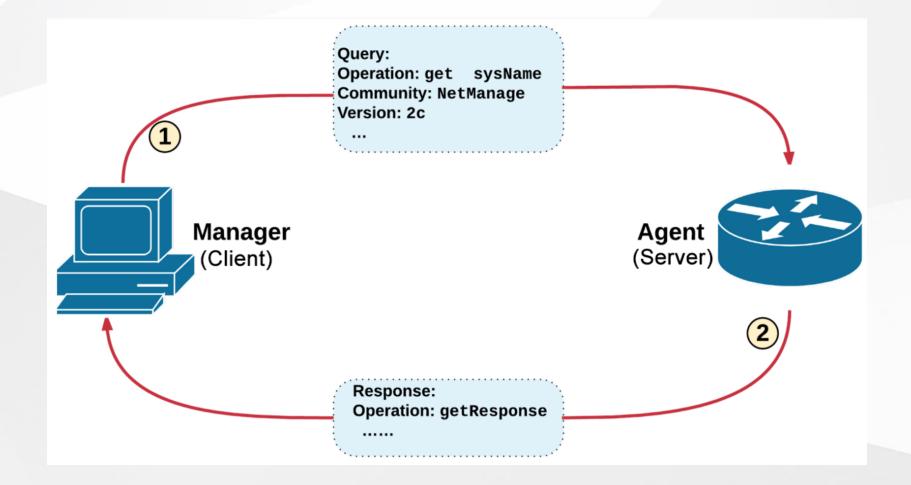
- Simple Network Management Protocol (SNMP)
 - Structured protocol, structured information
 - For querying network device state and receiving notifications
 - Also can be used to change state
 - Industry standard, hundreds of tools exist that use it
 - Supported on any decent network equipment
 - Transport : UDP ports 161 and 162 (notifications)

Uses for SNMP

- Typical queries
 - Bytes In/Out on an interface, errors
 - CPU load
 - Uptime
 - Temperature
 - 0 ...
- For hosts (servers or workstations)
 - Disk space
 - Installed software
 - Running processes
 - 0 ...

SNMP Versions

- v1 (1988) Original specification
 - Historic
- v2 (1996) Failed Standard
 - Security + new data types + new operators
 - 64-bit counters, get-bulk, v2 notifications
 - View-based access control model (VACM) introduced
 - Historic, no current implementations left
- v2c (1996) De facto standard
 - v2 data types and operators
 - v1 security (community string) (simple security model)
 - Historic
- v3 (1998) Robust security
 - User/view based security (USM/VACM)
 - Full Internet Standard


We will use SNMP v2c and v3 in this class *npNOG5*

SNMP roles

Terminology - We will be using Manager and Agent

- Manager (the monitoring station)
 - Sometimes known as the SNMP client
 - SNMPv3 calls it the Command Generator and Notification Receiver
- Agent (running on the equipment/server)
 - Sometimes known as the SNMP server
 - SNMPv3 calls it the Command Responder and Notification Originator
 - Windows and UNIX have SNMP agents

How SNMP works: Query / Response

How SNMP works: Trap / Inform

How SNMP works

Basic operators:

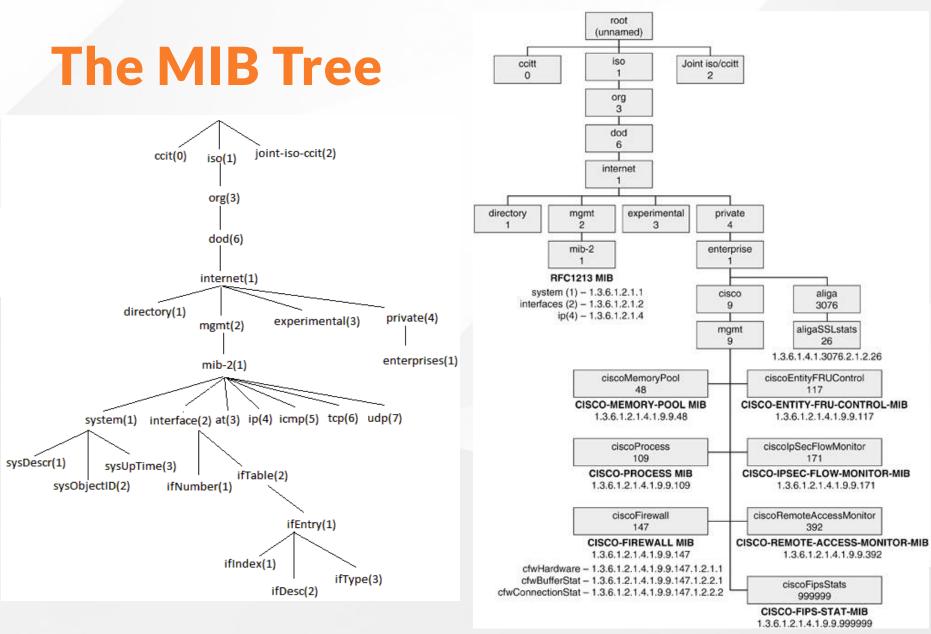
- get (manager -> agent)
 - $\circ~$ Query for a value
- getnext (manager -> agent)
 - Get next value (e.g. list of values for a table)
- getresponse (agent -> manager)
 - Response to get, getnext, or set, includes error returns
- **set** (manager -> agent)
 - Set a value, or perform an action
- trap (agent -> manager)
 - Spontaneous notification from equipment (line down, temperature above threshold, ...)

How SNMP works (Contd.)

- Query/response based
 - Monitoring generally uses get, getnext, getbulk
 - Changing state uses **set**
 - Response is always a **getresponse**
 - getbulk requires v2c or v3
- Notifications are delivered as traps or informs
 - traps are unacknowledged
 - informs are acknowledged (v2c, v3)
 - Use v2c format traps
 - No one uses **informs**

SNMP TRAPS

- A way for an Agent to notify the Manager without getting a Query from the Manager
- Agent is configured to send TRAP messages when an event occurs
 - coldStart
 - warmStart
 - ifDown
 - authenticationFailure
- After the manager receives the TRAP message, it can take further action if necessary


SNMP database

- The information offered by a device is available in its Management Information Base (MIB)
 - SNMP uses Object Identifiers (OIDs) to organize this information
 - OIDs are keys to identifying each piece of data
 - OIDs are organized into a tree structure that is the MIB
 - MIB files document parts of the MIB on a device

OIDs

OID: Object Identifier

- A unique key to select a particular item of data in the device
- The same piece of information is always found at the same OID. That's simple!
- An OID is a variable-length string of numbers, e.g.
 1.3.6.1.2.1.1.3
- Allocated hierarchically in a tree to ensure uniqueness (similar to DNS)

Interesting parts of the MIB tree

The Internet MIB, **.1.3.6.1**, really only two branches of interest:

- Standard MIBs
 - .1.3.6.1.2.1 = .iso.org.dod.internet.mgmt.mib-2
- Vendor-specific (proprietary) MIBs
 - **.1.3.6.1.4.1** =

.iso.org.dod.internet.private.enterprises

OIDs and MIB files

Read from left to right

- OID components separated by ''
 .1.3.6.1.4.1.9....
- Each OID corresponds to a label
 - .1.3.6.1.2.1.1.5 => sysName
- The complete path:
 - .iso.org.dod.internet.mgmt.mib2.system.sysName
- How do we convert from OIDs to Labels (and vice versa)?
 - Use the MIBs files!

MIB Files

- MIB files define the objects that can be queried, including:
 - Object name
 - Object description
 - Data type (integer, text, list)
- MIB files are structured text
 - using an ASN.1 subset called the Structure of Management Information (SMI)
- Standard MIB files include:
 - MIB-II (RFC1213) a sub-group of MIBs
 - HOST-RESOURCES-MIB (RFC2790)

MIB Sample

sysUpTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The time (in hundredths of a second) since the network management portion of the system was last reinitialized." ::= { system 3 }

MIB Sample (Contd.)

sysUpTime OBJECT-TYPE

This defines the object called sysUpTime.

• SYNTAX TimeTicks

 This object is of the type *TimeTicks*. Object types are specified in the SMI we mentioned a moment ago.

ACCESS read-only

• This object can only be read via SNMP (i.e. **get**, **getnext**); it cannot be changed (i.e. **set**).

STATUS mandatory

• This object must be implemented in any SNMP agent.

DESCRIPTION

• A description of the object

• ::= { system 3 }

 The *sysUpTime* object is the third branch off of the *system* object group tree.

MIB Files (Contd.)

- MIB files also make it possible to interpret a returned value from an agent
 - For example, the status for a fan could be:
 - 1, 2, 3, 4, 5, or 6
 - What does it mean?
- Look for the Textual Convention (tc) in the MIB

MIB Sample

npN

NVENTION
e of a device being monitored.
the environment is good, such as low temperature.
the environment is bad, such as temperature above normal operation range but not too high.
the environment is very bad, such as temperature much higher than normal operation limit.
the environment is the worst, the system should be shutdown immediately.
the environmental monitor is not present, such as temperature sensors do not exist.
the environmental monitor does not function properly, such as a temperature sensor generates a abnormal data like 1000 C.

SNMP and Security

- SNMP versions 1 and 2c are insecure
- SNMP version 3 was created to fix this
- SNMPv3 authentication is based on a "User-based Security Model" (USM):
 - Authenticity and integrity
 - Keys are used for users, and messages have digital signatures generated with a hash function (MD5 or SHA)
 - Privacy
 - Messages can be encrypted with secret-key (private) algorithms (DES or AES)
 - Temporary validity
 - Utilizes a synchronized clock with a 150 second window with sequence checking

SNMPv3 Security Levels

noAuthNoPriv

• No authentication, no privacy

authNoPriv

- Authentication with no privacy
- authPriv
 - Authentication with privacy

Cisco SNMP Agent Configuration R/O

Read-only

snmp-server community NetManage RO

Enables SNMPv1 and v2c

snmp-server group ReadGroup v3 auth
snmp-server user admin ReadGroup v3 auth sha NetManage

• SNMPv3 authentication, no encryption

Cisco SNMP Agent Configuration R/W

Read-write

snmp-server group WriteGroup v3 auth write v1default
snmp-server user admin-rw WriteGroup v3
auth sha NetManage priv aes 128 NetWrite

- Cisco allows authNoPriv and authPriv queries with this user
- You could also define a read-write user without encryption (priv)
- Note that we recommend using SNMP version 3 if you want write access using the set operator

Net-SNMP Agent (snmpd)

 Add a community string by editing /etc/snmp/snmpd.conf and adding:

rocommunity NetManage 100.64.0.0/16

- Add the SNMPv3 user
- # systemctl stop snmpd
 # net-snmp-create-v3-user -X DES -a NetManage admin
 # systemctl start snmpd

Querying an SNMP agent

Using Net-SNMP command line tools...

- Some typical commands for querying:
 - snmpget
 - snmpwalk
 - snmpbulkwalk (requires v2c or v3)
 - snmpstatus
 - snmptable
- All commands have same authentication options:
 - snmpXXX -v1 -c<community> host [OID]
 - snmpXXX -v2c -c<community> host [OID]
 snmpXXX -v3 -lauthNoPriv -u<user> -X DES -a<pass>
 - host [OID]>

Querying an SNMP agent (aka server)

Let's look at some examples

- \$ snmpstatus -v2c -c NetManage 100.68.Y.1
- \$ snmpget -v2c -c NetManage 100.68.Y.1 ifNumber.0
- \$ snmpwalk -v2c -c NetManage 100.68.Y.1 ifDescr

Querying an SNMP agent

• OID

- A value, for example, .1.3.6.1.2.1.1.5.0
- or its name equivalent: sysName.0
- For example:

\$ snmpget -v2c -c NetManage localhost .1.3.6.1.2.1.1.5.0
\$ snmpget -v2c -c NetManage localhost sysName.0
\$ snmpget -v2c -c NetManage localhost sysName

- Let's ask for the system's name (using the OID above)
 - Why the .0? What do you notice?

Failed Query...Why?

• Two gets:

```
# snmpget -v1 -c NetManage 100.68.1.1 ifHCInOctets.1
Error in packet
Reason: (noSuchName) There is no such variable name in this MIB.
Failed object: IF-MIB::ifHCInOctets.1
```

```
# snmpget -v2c -c NetManage 100.68.1.1 ifHCInOctets.1
IF-MIB::ifHCInOctets.1 = Counter64: 144058265
```

- Why? Notice the data type: Counter64. 64-bit counters are only supported in SNMPv2c and v3.
- 64-bit counters are important because 32-bit interface counters (ifInOctets) can wrap in 34 seconds on Gig interfaces. (How fast can it wrap on 10G?)

SNMP failure: no response?

- The device might be offline or unreachable
- The device might not be running an SNMP agent
- The device might be configured with a different community string
- The device might be configured to refuse SNMP queries from your IP address

In all of these cases you will get no response

SNMP Best Practices

- Secure your SNMP access and traffic:
 - Management VLAN
 - Access lists
 - Use SNMPv3 with authentication for queries and sets where possible
- Use SNMPv2c traps
 - Better formatted than v1 traps
 - Accurate timestamps
- Do no harm
 - Only poll as fast as you really need
 - Possible to drive CPU load on devices up and affect other protocol processing
 - It does no good to poll every 5 seconds if the device updates the counter every 10

References

- Essential SNMP (O'Reilly Books) by Douglas Mauro, Kevin Schmidt http://www.amazon.com/Essential-Second-Edition-Douglas-Mauro/dp/0596008406
- Wikipedia http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
- MIB/OID Browser http://oid-info.com/
- Cisco IOS MIB Tools https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index
- Open Source Java MIB Browser http://www.dwipal.com/mibbrowser.htm
- SNMP Link collection of SNMP resources http://www.snmplink.org/
- Net-SNMP Open Source SNMP tools http://net-snmp.sourceforge.net/

